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1 One line summary

We present a data-driven method to analyze sta-
bility of human locomotion, by inferring multiple
Poincare sections around the periodic orbit, and
construct a piecewise model to simulate and pre-
dict transient responses of human locomotion un-
der various circumstance.

2 Introduction

Gait variability. Steady human walking and run-
ning is only approximately periodic, in which while
every stride is similar to every other stride, the
strides are not quite identical as in figure 1. It
is not completely settled what the source of this
stride-to-stride variability is in human walking, but
it likely is a mixture of noisy muscle forces [3], sen-
sory noise [5], and perhaps imperceptibly small ex-
ternal perturbations. A number of researchers have
attempted to characterize the variability of human
locomotion by using linear and and nonlinear time
series techniques. A review of some these tech-
niques can be found in [8]. However, the actual
dynamics around the periodic orbit has not been
fully explored.
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Figure 1: Nearly periodic human running

Nonlinear dynamics techniques. If we had dif-
ferential equations describing the periodic motion
of these systems, we could understand the dynam-
ics and stability of such periodic motions by analyz-
ing the differential equations in the neighborhood

of the nominal periodic orbit. In particular, given
a nonlinear dynamical system with an isolated pe-
riodic motion, also called a limit cycle [2], one typ-
ically considers the linearization of the dynamical
system near the periodic orbit to understand the
stability of the periodic orbit. The linearization of
the Poincare map around x∗ as in figure 2a is given
by:

x(i+1) − x∗ = J · (x(i) − x∗) (1)

where J is the Jacobian of the function P (·) at
x∗. This linearization, specifically the eigenvalues
of the Jacobian J , is generically sufficient to test
local stability of the periodic motion.

3 Previous approaches

Eigenvalue estimation and system identifica-
tion around a period orbit using experimen-
tal data. Once we have a dynamical system driven
by noise with known statistical properties, we can
fit a linear model of the dynamics to the data, say
in a manner that minimizes the least squared resid-
uals of the model given the data. This is an old
idea, even in legged locomotion, but it has not been
explored thoroughly and rigorously. Hurmuzlu [4]
used this idea to obtain estimates of the lineariza-
tion to the Poincare map and the corresponding
eigenvalues using events like heel strike or toe off
as specific Poincare sections. Dingwell [1] and co-
authors have used variants of this technique in a
series of articles since then. Revzen and Gucken-
heimer [7] recently revisited this idea, in which in-
stead of considering smooth transverse surfaces for
Poincare section, they used data-derived phase co-
ordinates [6]; they used this method to examine the
stability of cockroach locomotion. Along the way,
Revzen and Guckenheimer compute the so-called
Floquet coordinates corresponding to the dynam-
ics near the periodic motion, providing a simple
description of the continuous dynamics around the
periodic orbit; they also provide detailed estimates
of the error in their infererred Jacobians and their



eigenvalues by bootstrapped versions of the data.
More recently, Maus and Revzen (DW, 2011) ap-
plied these techniques to human running.
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Figure 2: Periodic motions and Poincare sections.

4 Our contribution

Our first contribution is to the system identifica-
tion literature, developing methods for estimat-
ing dynamical models and stability information
near noise-driven periodic motions. We introduce
the idea of representing the continuous dynam-
ics as mappings between multiple Poincare sec-
tions and then inferring these mappings (see Figure
2b). From a large number of these discrete map-
pings, one could infer continuous (differential equa-
tion) dynamics around the periodic orbit. We have
tested these methods in detail using synthetic data
from both discrete and continuous systems, how
well these methods work under various assump-
tions, providing some proofs for certain results.
It appears that the inference of multiple Poincare
maps simultaneously slightly reduces the error es-
timates in the presence of noise, compared to the
inferring single Poincare maps from data. More sig-
nificantly, the method provides a data based simu-
lation of responses to novel perturbations. Our sec-
ond contribution is to the biomechanics literature,
in which we attempt to use the method of multi-
ple Poincare sections to construct a data-derived
model not only to represent steady human loco-
motion, but also predict other various transient re-
sponses. Right now, we are using process-noise-
driven steady state human data, but we also pro-
pose to use perturbation data as below.

Proposed work in the near future: Pertur-
bation experiments. We are planning experi-
ments in which the human subjects undergo tran-
sients from which we hope to infer some of these
dynamics. Two types of transients are planned
– due to (1) self-imposed perturbations (2) exter-
nal perturbations. Self-imposed perturbations are
when a subject intentionally takes a single long or

short or high or wide step, and then continues to
walk or run normally. From the transient after the
abnormal step, we hope to infer some dynamical
information about the locomotion. Small external
perturbations will be applied that slightly perturb
the hip in some direction, and from the responses,
we hope to infer the dynamics (at least along some
directions).

Key Words: Data-driven method, Stability, Hu-
man locomotion dynamics, response to perturba-
tions, variability. Format: We wish to give a
poster and apply for a student travel grant.
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