
Indicators for Emergence of Double-limb Support in 
Passive Dynamic Walking

3. Our Approach

3.1 Computational procedure for velocity just after impact

The equations for inelastic collision of Leg 1 with the ground becomes
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1. Motivation and State of the Art  
The effects of double-limb support (DLS) motion must play important roles in
stable dynamic walking. The mechanism of DLS, however, has not been
investigated in detail in the field of limit cycle walking because the stance-leg
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and the Jacobian matrix is selected in accordance with the following algorithm.

1. We set and compute
2. λI2 ≥ 0 and λI4 ≥ 0 must hold to transition to DLS. It is obvious, however, that

λI2 > 0 always holds. Therefore we should check the sign of λI4 only.
3. If λI4 < 0, DLS motion does not emerge. We then compute by setting J(q†) =

JSLS.
4. If λI4 ≥ 0, the motion then transitions to DLS and we compute by setting

J(q†) = JDLS(q†)2 Passive Telescopic-legged Rimless Wheel

exchange is generally modeled on the assumption of inelastic collision; the rear
leg leaves the ground just after the touchdown of the fore leg [1].

Based on the observations, the authors have investigated the potentiality of the
emergence of DLS motion in passive cycle walking (PDW).We confirmed that a
viscoelastic-legged rimless wheel (VRW) shown in Fig. 1 emerges the measurable
period of DLS through numerical simulations and experiments [2]. The purposes
of this study are to identify the conditions for the emergence of DLS motion in
PDWand to specify the computational procedure for transition to DLS.

† † † † T †( ) ( ) ( ) , ( )I I I
    0M q q M q q J q λ J q q  

4 5
DLS( ) ( )I R  J q J q  T1 2 3 4( ) .I I I I I   λ q

q

q
J(q ) JDLS(q ).

3.2 Computational procedure for acceleration just after impact
1. If λI4 ≥ 0, the motion is determined to transition to DLS. The equations of

motion just after impact are then specified as

We then solve the equations for and .

2. If and , then we take obtained in 1. as the proper initial
acceleration vector and continue the numerical integral. The motion transitions
t DLS

2. Passive Telescopic-legged Rimless Wheel
Fig. 1 shows our experimental VRW (left) and the ideal model (right). This
consists of eight identical telescopic-leg frames with viscoelasticity. Let c [N·s/m]
be the viscosity coefficient and k [N/m] be the elastic coefficient. Let

be the generalized coordinate vector. The robot equation of motion then becomes

where the Jacobian matrix, J(q), is selected according to the contact conditions.
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to DLS.

3. If and , unilateral constraint condition is not satisfied and the
motion should transition to SLS. We then break λ+ and obtained in 1., and
solve the following equations for λ+∈R2 and .

4. We take these newly-calculated vectors as the proper initial conditions, and
begin the numerical integral.

The measurable period of DLS emerges after impact as shown in Fig. 2 if and only
if d i i Th h i i h d h DLS

, (q), g
The second equation represents the holonomic constraint condition. In the period
of DLS, the following two conditions hold.

 The end-point of Leg 1 (the fore support leg in the model of Fig. 1) contacts the
floor without slipping. ( Constraint 1)

 The end-point of Leg 2 (the rear support leg in the model of Fig. 1) contacts the
floor without slipping. ( Constraint 2)

The holonomic constraint force can be divided in to
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if , , and are positive. These three quantities are thus termed as the DLS-
Indicators (DLSIs).
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Constraint 1 Constraint 2 These terms (ground reaction forces
of Leg 2) becomes zero after the
motion transitions to SLS.
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4. Analysis Results of DLSIs 
Fig. 3 plots the DLSIs with respect to the leg viscosity, c, in PDW on the slope of 
= 0.10 [rad]. The physical parameters were chosen as listed in Table 1. See [2] for
the details of the notations. Here, (a) plots and (b) plots and . We also
plotted their values with different symbols in the case that scuffing of Leg 2 arises;
the rear leg quickly extends after takeoff where c is small and the end-point hits
the ground. As seen from Fig. 3 (b), monotonically decreases as c increases and
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Figure 1: Experimental viscoelastic-legged rimless wheel (left) and its ideal model (right)

Leg 2
Leg 1
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(a) λI4 [N] (b) [N]2 4 and   
Table 1: Parameter settings

mH 10 0 kg

g g ( ), y
finally reaches zero where c = 220 [N·s/m]. This implies that unilateral constraint
of Leg 2 just after impact does not hold and the stance-leg exchange is then
completed instantaneously where c ≥ 220. is, however, always positive as
shown in Fig. 3 (a). The Jacobian matrix is therefore chosen as JI(q†) = JDLS(q†)
and the impact model is different from the traditional one [1]. On the other hand,
monotonically decreases as c decreases and finally reaches zero where c = 4.0
[N·s/m]. This implies that bouncing of Leg 1 arises where c ≤ 4.0.
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mH 10.0 kg

m 1.0 kg

a 0.3 m

L0 1.0 m

L* 1.02 m

 45 deg

k 500 N/m

 0 1 rad
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Figure 2: Snapshots of double-limb support motion in passive dynamic walking

Figure 3: DLSIs with respect c in passive dynamic walking  0.1 rad


