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1. Introduction

◮ Motivation: Theoretically, dynamic walking gaits are periodic solutions that can exist
either as a natural response of the system or by the use of feedback control.
Analytically, finding these solutions is certainly challenging, and the complexity of the
problem increases considerably when a mixture in between passive and actuated
joints is considered, e.g. underactuated robots.

◮ Solution: Virtual holonomic constraints (VHC) allows a tractable analytical and
practical approach to achieve stable limit cycle motions.

◮ Difficulties: There is a lack of a systematic procedure to find these VHC for systems
with underactuation higher than one. This can be ease as shown in the example
below.

◮ Model: The model represents a planar biped walker with two symmetric legs and
upper torso.

Figure: Biped. Schematics of the biped in the
sagittal plane and level ground.

◮ The dynamics during the stance phase
is given by

M(q)q̈ + C(q, q̇)q̇ + G(q) =
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◮ The instantaneous jump in the values of
the states (post-impact) can be
computed as follows
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∈ Γ− , q+

∈ Γ+ .

◮ The impact condition is

Γ+ = Γ− = cos(q1) − cos(q2) = 0 .

◮ Objective: The main technical objective is to show a procedure for gait synthesis
based on VHC for systems with underactuation degree higher than one.

2. Gait Synthesis

The gait synthesis approach consists of finding a set of time independent geometric
functions, which uniquely describe the instantaneous postures of the robot along the
gait:
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where θ ∈ [θ+, θ−], representing the initial and final stance-leg angles. With this
scheme the stance leg becomes a form of trajectory generator, which dynamics is
defined as

α1(θ)θ̈ + β1(θ)θ̇
2 + γ1(θ)
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2 + γ2(θ)
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Notice that the previous set of differential equations are linear in θ̈, θ̇2, and u, giving
the solution
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MAIN CONTRIBUTION

Given the relation between the derivatives
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we find that
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yielding the differential equation

φ′′′3 = f (θ, φ2, φ3, φ′2, φ′3, φ′′2, φ′′3, φ′′′2 ) ,

for the torso’s trajectory φ3 as a function of the legs i.e., θ and φ2. It can be solved
given the function φ2, and the initial condition vector,

ζ = [θ+, φ+
3 , φ′+3 , φ′′+3 ] ∈ R

4×1 ,

In this form, the problem of finding the two functions φi, gets reduced to the
search for φ2 to solve φ′′′3 .

3. Optimization procedure to find periodic gaits

1. The motion of the swing leg φ2 can be defined by an arbitrary function C3 smooth,
e.g. Bézier polynomial.

2. Choose a vector of initial conditions and parameters such that

χ0 =
[

θ+, φ+
2 , φ+

3 , q̇+
1 , q̇+

2 , q̇+
3

]

∈ Γ+ .

3. Calculate φ′′+3 from dynamics of the robot.

4. Define θ− = −θ+, to solve the differential equation φ′′′3 , if the solution is not well-defined
for the whole interval go back to the first step.

5. Once the solution φ3(θ) has been found, compute θ̇, i.e.,

θ̇− =
√

D2(θ−) = q̇−

1 .

6. Use the end-values of the solution from the previous steps to define the vector

χ−
⋆ =

[

θ−, φ−2 , φ−3 , q̇−

1 , q̇−
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3

]

∈ Γ− .

7. Apply the impact equation, i.e.
χ+

⋆ = ∆ · χ−
⋆ .

8. Verify that
∥

∥χ0 − χ+
⋆

∥

∥ ≈ 0.

If such an equality does not comply, adjust the vector χ0 and repeat all the process.

9. This procedure can be formulated to additionally attain to minimize a cost function

J =
1

Lstep
J0(u) ,

where Lstep = 2r sin(θ+) is the step length, and J0(u) is an integral of the absolute
power needed to generate this trajectory, i.e.,
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∣
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4. Simulations

◮ Gait: One gait found by this procedure has the solution’s vector given by

χ⋆ ≈ [−0.2503, 0.2503, 0.3131, 1.2512, 0.4956,−0.2695] ,

q1 ∈ [−0.2503, 0.2503], Te = 0.4878 sec, K = 23.9770 N/m. The numerical value of
energy calculated for this gait is 21.16 W /m. The constraint functions φ2(θ), φ3(θ), and
the control signal u(θ) are shown below.
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Figure: Trajectories as functions of q1 with initial conditions χ⋆. The motion goes from left to right.

◮ Control: The gait is stabilized by feedback control, and applying the technique know
as hybrid transverse linearization proposed by Prof. A. Shiriaev to the case of
systems with several passive links.
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Figure: Walking gait in the phase space ql vs q̇l, i.e. stance and swing legs positions and velocities. The
red line represents the nominal gait, and ▽ points out the initialization of the simulation.
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