

Balancing Experiments on a Torque Controlled Humanoid with Hierarchical Inverse Dynamics

Alexander Herzog, Ludovic Righetti, Felix Grimminger, Peter Pastor, Stefan Schaal

Low-level control of Sarcos humanoid

- Lower body of Sarcos humanoid
- 17 DOFs
- Linear hydraulic actuators
- Moog 30 Series valves
- Load cells and position sensors at each joint
- 6-axis force sensors in the foot
- IKHz control loop

Control of hydraulics

• How do we implement a "torque source" with hydraulics?

[Boaventura et al. 2012]

$$v = PID(F_{des}, F) + K\dot{x}_{piston} + c$$

This controller was key to good force control performances

 Special care in calibration and tuning of controller to maximize performance

Torque tracking performance

[Boaventura et al. 2012]

Tracking a 15Hz sine torque profile (5Nm amplitude)

Torque tracking performance

Control of hydraulics

- Painful to tune controllers for each DOF
- Control performance not so good for ankles (velocity compensation gain really depends on position)
- Now: looking into automatic tuning / learning control (current work by S. Trimpe)

[Righetti et al., IJRR 2013]

QR decomposition of constraint Jacobian $\mathbf{J}_c^T = [\mathbf{Q}_c \ \mathbf{Q}_u] \begin{vmatrix} \mathbf{R} \\ \mathbf{0} \end{vmatrix}$ [Mistry et al. 2010]

$$\mathbf{J}_c^T = \left[\mathbf{Q}_c \; \mathbf{Q}_u
ight] \left[egin{array}{c} \mathbf{R} \ \mathbf{0} \end{array}
ight]$$

Equations of motion: $\mathbf{M}\ddot{\mathbf{q}} + \mathbf{h} = \mathbf{S}^T \boldsymbol{\tau} + \mathbf{J}_c^T \boldsymbol{\lambda}$

[Righetti et al., IJRR 2013]

QR decomposition of constraint Jacobian $\mathbf{J}_c^T = [\mathbf{Q}_c \ \mathbf{Q}_u] \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}$ [Mistry et al. 2010]

$$\mathbf{J}_c^T = \left[\mathbf{Q}_c \; \mathbf{Q}_u
ight] \left[egin{array}{c} \mathbf{R} \ \mathbf{0} \end{array}
ight]$$

Equations of motion:

[Righetti et al., IJRR 2013]

QR decomposition of constraint Jacobian [Mistry et al. 2010]

$$\mathbf{J}_c^T = \left[\mathbf{Q}_c \,\, \mathbf{Q}_u
ight] \left[egin{array}{c} \mathbf{R} \ \mathbf{0} \end{array}
ight]$$

Equations of motion:

$$\mathbf{Q}_u^T(\mathbf{M}\ddot{\mathbf{q}}_d + \mathbf{h}) = \mathbf{Q}_u^T \mathbf{S}^T \boldsymbol{\tau}$$

$$\lambda = \mathbf{R}^{-1} \mathbf{Q}_c^T (\mathbf{M} \ddot{\mathbf{q}}_d + \mathbf{h} - \mathbf{S}^T \boldsymbol{\tau})$$

Dynamic consistency

Contact force as a function of actuation

[Righetti et al. 2012]

$$\arg\min_{\boldsymbol{\tau},\boldsymbol{\lambda}} \frac{1}{2} \boldsymbol{\tau}^T \mathbf{W}_{\tau} \boldsymbol{\tau} + \mathbf{b}_{\tau}^T \boldsymbol{\tau} + \frac{1}{2} \boldsymbol{\lambda}^T \mathbf{W}_{\lambda} \boldsymbol{\lambda} + \mathbf{b}_{\lambda}^T \boldsymbol{\lambda}$$

s.t.
$$\mathbf{Q}_u^T \mathbf{S}^T \boldsymbol{\tau} = \mathbf{Q}_u^T (\mathbf{M} \ddot{\mathbf{q}}_d + \mathbf{h})$$

Dynamic consistency

[Righetti et al. 2012]

$$\arg\min_{\boldsymbol{\tau}, \boldsymbol{\lambda}} \frac{1}{2} \boldsymbol{\tau}^T \mathbf{W}_{\tau} \boldsymbol{\tau} + \mathbf{b}_{\tau}^T \boldsymbol{\tau} + \frac{1}{2} \boldsymbol{\lambda}^T \mathbf{W}_{\lambda} \boldsymbol{\lambda} + \mathbf{b}_{\lambda}^T \boldsymbol{\lambda}$$

s.t.
$$\mathbf{Q}_u^T \mathbf{S}^T \boldsymbol{\tau} = \mathbf{Q}_u^T (\mathbf{M} \ddot{\mathbf{q}}_d + \mathbf{h})$$

 $\mathbf{C}_{\tau} \boldsymbol{\tau} \leq \mathbf{d}_{\tau}$

Dynamic consistency

Torque constraints

[Righetti et al. 2012]

$$\arg\min_{\boldsymbol{\tau}, \boldsymbol{\lambda}} \frac{1}{2} \boldsymbol{\tau}^T \mathbf{W}_{\tau} \boldsymbol{\tau} + \mathbf{b}_{\tau}^T \boldsymbol{\tau} + \frac{1}{2} \boldsymbol{\lambda}^T \mathbf{W}_{\lambda} \boldsymbol{\lambda} + \mathbf{b}_{\lambda}^T \boldsymbol{\lambda}$$

$$s.t.$$
 $\mathbf{Q}_u^T \mathbf{S}^T \boldsymbol{ au} = \mathbf{Q}_u^T (\mathbf{M} \ddot{\mathbf{q}}_d + \mathbf{h})$ $\mathbf{C}_{ au} \boldsymbol{ au} \leq \mathbf{d}_{ au}$ $\mathbf{C}_{\lambda} \boldsymbol{\lambda} \leq \mathbf{d}_{\lambda}$

Dynamic consistency

Torque constraints

Contact forces constraints

[Righetti et al. 2012]

$$\arg\min_{\boldsymbol{\tau}, \boldsymbol{\lambda}} \frac{1}{2} \boldsymbol{\tau}^T \mathbf{W}_{\tau} \boldsymbol{\tau} + \mathbf{b}_{\tau}^T \boldsymbol{\tau} + \frac{1}{2} \boldsymbol{\lambda}^T \mathbf{W}_{\lambda} \boldsymbol{\lambda} + \mathbf{b}_{\lambda}^T \boldsymbol{\lambda}$$

$$s.t.$$
 $\mathbf{Q}_{u}^{T}\mathbf{S}^{T}\boldsymbol{ au} = \mathbf{Q}_{u}^{T}(\mathbf{M}\ddot{\mathbf{q}}_{d} + \mathbf{h})$ $\mathbf{C}_{\tau}\boldsymbol{ au} \leq \mathbf{d}_{\tau}$ $\mathbf{C}_{\lambda}\boldsymbol{\lambda} \leq \mathbf{d}_{\lambda}$

Dynamic consistency

Torque constraints

Contact forces constraints

[Righetti et al. 2012]

$$\arg\min_{\boldsymbol{\tau}} \frac{1}{2} \boldsymbol{\tau}^T \mathbf{W}_{\tau} \boldsymbol{\tau} + \mathbf{b}_{\tau}^T \boldsymbol{\tau} + \frac{1}{2} \boldsymbol{\lambda}^T \mathbf{W}_{\lambda} \boldsymbol{\lambda} + \mathbf{b}_{\lambda}^T \boldsymbol{\lambda}$$

$$s.t.$$
 $\mathbf{Q}_u^T\mathbf{S}^T\boldsymbol{ au} = \mathbf{Q}_u^T(\mathbf{M}\ddot{\mathbf{q}}_d + \mathbf{h})$ Dynamic consistency $\mathbf{C}_{ au}\boldsymbol{ au} \leq \mathbf{d}_{ au}$ Torque constraints $-\mathbf{C}_{\lambda}\mathbf{R}^{-1}\mathbf{Q}_c^T\mathbf{S}^T\boldsymbol{ au} \leq \mathbf{d}_{\lambda} - \mathbf{C}_{\lambda}\mathbf{R}^{-1}\mathbf{Q}_c^T(\mathbf{M}\ddot{\mathbf{q}}_d + \mathbf{h})$ Contact forces constraints

[Righetti et al. 2012]

$$\arg\min_{\boldsymbol{\tau}} \frac{1}{2} \boldsymbol{\tau}^T \mathbf{W}_{\tau} \boldsymbol{\tau} + \mathbf{b}_{\tau}^T \boldsymbol{\tau} + \frac{1}{2} \boldsymbol{\lambda}^T \mathbf{W}_{\lambda} \boldsymbol{\lambda} + \mathbf{b}_{\lambda}^T \boldsymbol{\lambda}$$

$$s.t.$$
 $\mathbf{Q}_u^T \mathbf{S}^T \boldsymbol{ au} = \mathbf{Q}_u^T (\mathbf{M}\ddot{\mathbf{q}}_d + \mathbf{h})$ Dynamic consistency $\mathbf{C}_{\tau} \boldsymbol{ au} \leq \mathbf{d}_{\tau}$ Torque constraints $-\mathbf{C}_{\lambda} \mathbf{R}^{-1} \mathbf{Q}_c^T \mathbf{S}^T \boldsymbol{ au} \leq \mathbf{d}_{\lambda} - \mathbf{C}_{\lambda} \mathbf{R}^{-1} \mathbf{Q}_c^T (\mathbf{M}\ddot{\mathbf{q}}_d + \mathbf{h})$ Contact forces constraints

- QP depends only on torques
- No need of an explicit representation of contact forces
- Problem with constant size no matter the number of contacts

Climbing a 0.25 radians slope with low friction (coefficient of static friction = 0.4)

[Righetti et al., IJRR 2013] [Mistry et al., 2010]

- Inverse dynamics (joint acceleration) and operational space (task space accelerations) control
- Torque redundancy to optimize contact forces
- Computationally fast (IKHz control loop)
- Robust to model uncertainties / better with system identification (no need to compute inertia matrix)

Related Work

- Passivity-based: exploit quasi-static assumption [Hyon et al, 2007][Ott et al, 2011]
 - + robustness due to passivity; no need for precise dynamics model
 - assumptions are potentially limiting for dynamic motions
- Control with full Dynamical Model [Stephens et al, 2010][Hutter et al, 2012][Righetti et al, 2013]
 - + theoretically well suited for dynamic motions
 - requires model and efficient implementation

Motivation

define desired closed-loop dynamics

e.g.
$$\mathbf{J_x\ddot{q}} = PD(\mathbf{x}_{des}, \mathbf{\dot{x}}_{des})$$
 (I)

- Typical use of the presented framework:
 - define desired closed-loop dynamics
 - pick one \ddot{q}^* (out of many) that satisfies Eq (1)

Motivation

define desired closed-loop dynamics

e.g.
$$\mathbf{J_x\ddot{q}}=PD(\mathbf{x}_{des},\mathbf{\dot{x}}_{des})$$
 (I)

exploit redundancy to optimize cost on torques or forces

$$egin{aligned} \min_{oldsymbol{ au},oldsymbol{\lambda}} & oldsymbol{\lambda}^T \mathbf{W}_{oldsymbol{\lambda}} oldsymbol{\lambda} \ & \mathrm{s.t.} & \mathbf{M} \ddot{\mathbf{q}}_d + \mathbf{h} = \mathbf{S}^T oldsymbol{ au} + \mathbf{J}^T oldsymbol{\lambda} \ & oldsymbol{ au}_{min} \leq oldsymbol{ au} \leq oldsymbol{ au} \leq oldsymbol{ au}_{max} \end{aligned}$$

- Typical use of the presented framework:
 - define desired closed-loop dynamics
 - pick one \ddot{q}^* (out of many) that satisfies Eq (1)
 - optimize over space of redundant torques and forces

Motivation

define desired closed-loop dynamics

e.g.
$$\mathbf{J_x\ddot{q}}=PD(\mathbf{x}_{des},\mathbf{\dot{x}}_{des})$$
 (I)

exploit redundancy to optimize cost on torques or forces

$$egin{aligned} \min_{oldsymbol{ au},oldsymbol{\lambda}} & oldsymbol{\lambda}^T \mathbf{W}_{oldsymbol{\lambda}} \ & ext{s.t.} & \mathbf{M}\ddot{\mathbf{q}}_d + \mathbf{h} = \mathbf{S}^T oldsymbol{ au} + \mathbf{J}^T oldsymbol{\lambda} \ & oldsymbol{ au}_{min} \leq oldsymbol{ au} \leq oldsymbol{ au} \leq oldsymbol{ au}_{max} \end{aligned}$$

- Typical use of the presented framework:
 - define desired closed-loop dynamics
 - pick one \ddot{q}^* (out of many) that satisfies Eq (1)
 - optimize over space of redundant torques and forces
- Potentially suboptimal or even infeasible by ignoring all other solutions to Eq (I)
- In addition it is useful to be able to express hierarchies on inequalities

Hierarchies

- We want
 - the CoM to have PD behavior
 - the hand as well
- what if both cannot be satisfied?
- => weighting might help

Hierarchies

- We want
 - the CoM to have PD behavior
 - the hand as well
- what if both cannot be satisfied?
- => weighting might help

- We want
 - the CoM to have PD behavior
 - CoP to reside inside support polygon
- if CoP constr. violated => kinematics constraint wrong
- => hierarchies

Related Work

- cascades of QPs: recursively solve a QP without violating optimality of previous QPs [de Lasa,2010, Mansard, 2012]
 - generalize pseudo-inverse approaches: allow inequality constraints
 - have not been implemented in a feedback-loop on a robot before
 - requires efficient implementation to run on torque controlled robot
 - how well does it perform under model-uncertainty, noisy velocity measures and realistic base-state estimation?

$$\mathbf{y} = egin{bmatrix} \mathbf{q} \ \mathbf{t} \ \mathbf{w}_1 (\mathbf{B}_1 \mathbf{y} + \mathbf{b}_1) = \mathbf{w}_1 \end{pmatrix}$$

QP I:
$$\min_{\mathbf{y}, \mathbf{v}_1, \mathbf{w}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{w}_1\|^2$$

$$\mathbf{y} = \begin{bmatrix} \ddot{\mathbf{q}} \\ \tau \\ \lambda \end{bmatrix} \quad \text{S.t. } \mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) \leq \mathbf{v}_1,$$

$$\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1) = \mathbf{w}_1$$

$$\begin{aligned} & \text{QP I: } \min_{\mathbf{y}, \mathbf{v}_1, \mathbf{w}_1} \ \| \mathbf{v}_1 \|^2 + \| \mathbf{w}_1 \|^2 \\ & \text{y.s...} \ \| \mathbf{v}_1 \|^2 + \| \mathbf{W}_1 (\mathbf{B}_1 \mathbf{y} + \mathbf{b}_1) \|^2 \\ & \text{y.s...} \ \| \mathbf{v}_1 \|^2 + \| \mathbf{W}_1 (\mathbf{B}_1 \mathbf{y} + \mathbf{b}_1) \|^2 \\ & \text{y.s...} \ \| \mathbf{v}_1 \|^2 + \| \mathbf{W}_1 (\mathbf{B}_1 \mathbf{y} + \mathbf{b}_1) \|^2 \\ & \text{y.s...} \ \| \mathbf{v}_1 \|^2 + \| \mathbf{W}_1 (\mathbf{B}_1 \mathbf{y} + \mathbf{b}_1) \|^2 \end{aligned}$$

[deLasa et. al., 2010]

QP I:
$$\min_{\mathbf{y}, \mathbf{v}_1, \mathbf{w}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{w}_1\|^2$$

$$\mathbf{y} = egin{bmatrix} \ddot{\mathbf{q}} \ oldsymbol{ au} \ oldsymbol{\lambda} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} \ddot{\mathbf{q}} \\ \boldsymbol{\tau} \\ \boldsymbol{\lambda} \end{bmatrix}$$
 s.t. $\mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) \leq \mathbf{v}_1,$ $\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1) = \mathbf{w}_1$

$$\min_{\mathbf{y}, \mathbf{v}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1)\|^2$$

$$\longrightarrow$$
 s.t. $\mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) \leq \mathbf{v}_1$

find optimizer
$$\mathbf{V}_{1}^{*}, \mathbf{V}_{1}^{*}$$

$$\mathbf{y} = \mathbf{y}_1^* + \mathbf{Z}_1 \mathbf{u}_2,$$

$$\mathbf{V}_1(\mathbf{A}_1 \mathbf{y} + \mathbf{a}_1) - \mathbf{v}_1^* \le 0$$

$$\mathbf{Z}_i$$
 surjective map onto $\bigcap_{j=1}^i \text{Nullspace}(\mathbf{W}_j \mathbf{B}_j)$

[deLasa et. al., 2010]

QP I:
$$\min_{\mathbf{y}, \mathbf{v}_1, \mathbf{w}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{w}_1\|^2$$

$$\mathbf{y} = egin{bmatrix} \ddot{\mathbf{q}} \ oldsymbol{ au} \ oldsymbol{\lambda} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} \ddot{\mathbf{q}} \\ \boldsymbol{\tau} \\ \boldsymbol{\lambda} \end{bmatrix}$$
 s.t. $\mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) \leq \mathbf{v}_1,$ $\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1) = \mathbf{w}_1$

$$\min_{\mathbf{y}, \mathbf{v}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1)\|^2$$

$$\mathbf{S.t.} \ \mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) \leq \mathbf{v}_1$$

find optimizer
$$\mathbf{y}_1^*, \mathbf{v}_1^*$$

$$\mathbf{y} = \mathbf{y}_1^* + \mathbf{Z}_1 \mathbf{u}_2,$$

$$\mathbf{V}_1(\mathbf{A}_1 \mathbf{y} + \mathbf{a}_1) - \mathbf{v}_1^* \le 0$$

$$\mathbf{Z}_i$$
 surjective map onto $\bigcap_{j=1}^i \text{Nullspace}(\mathbf{W}_j \mathbf{B}_j)$

[deLasa et. al., 2010]

QP I:
$$\min_{\mathbf{y}, \mathbf{v}_1, \mathbf{w}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{w}_1\|^2$$

$$\mathbf{y} = egin{bmatrix} \ddot{\mathbf{q}} \ oldsymbol{ au} \ oldsymbol{\lambda} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} \ddot{\mathbf{q}} \\ \mathbf{\tau} \\ \lambda \end{bmatrix}$$
 S.t. $\mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) \leq \mathbf{v}_1,$ $\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1) = \mathbf{w}_1$

$$\min_{\mathbf{y}, \mathbf{v}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1)\|^2$$

s.t.
$$\mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) \leq \mathbf{v}_1$$

$$\mathbf{y} = \mathbf{y}_1^* + \mathbf{Z}_1 \mathbf{u}_2,$$

$$\mathbf{V}_1(\mathbf{A}_1 \mathbf{y} + \mathbf{a}_1) - \mathbf{v}_1^* \le 0$$

QP 2:
$$\min_{\mathbf{u}_2, \mathbf{v}_2} \|\mathbf{v}_2\|^2 + \|\mathbf{W}_2(\mathbf{B}_2\mathbf{y} + \mathbf{b}_2)\|^2$$

s.t.
$$V_2(A_2y + a_2) \le v_2$$
,

[deLasa et. al., 2010]

QP I:
$$\min_{\mathbf{y}, \mathbf{v}_1, \mathbf{w}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{w}_1\|^2$$

$$\mathbf{y} = egin{bmatrix} \ddot{\mathbf{q}} \ oldsymbol{ au} \ oldsymbol{\lambda} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} \ddot{\mathbf{q}} \\ \boldsymbol{\tau} \\ \boldsymbol{\lambda} \end{bmatrix}$$
 s.t. $\mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) \leq \mathbf{v}_1,$ $\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1) = \mathbf{w}_1$

$$\min_{\mathbf{y}, \mathbf{v}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1)\|^2$$

s.t.
$$V_1(A_1y + a_1) \le v_1$$

All optimal solutions:

$$\mathbf{y} = \mathbf{y}_1^* + \mathbf{Z}_1 \mathbf{u}_2,$$

$$\mathbf{V}_1(\mathbf{A}_1 \mathbf{y} + \mathbf{a}_1) - \mathbf{v}_1^* \le 0$$

QP 2: $\min_{\mathbf{u}_2, \mathbf{v}_2} \|\mathbf{v}_2\|^2 + \|\mathbf{W}_2(\mathbf{B}_2\mathbf{y} + \mathbf{b}_2)\|^2$

s.t.
$$\mathbf{V}_2(\mathbf{A}_2\mathbf{y} + \mathbf{a}_2) \leq \mathbf{v}_2,$$

 $\mathbf{y} = \mathbf{y}_1^* + \mathbf{Z}_1\mathbf{u}_2,$
 $\mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) - \mathbf{v}_1^* \leq 0$

$$\mathbf{Z}_i$$
 surjective map onto $\bigcap_{j=1}^i \text{Nullspace}(\mathbf{W}_j \mathbf{B}_j)$

[deLasa et. al., 2010]

QP I:
$$\min_{\mathbf{y}, \mathbf{v}_1, \mathbf{w}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{w}_1\|^2$$

$$\mathbf{y} = egin{bmatrix} \ddot{\mathbf{q}} \ oldsymbol{ au} \ oldsymbol{\lambda} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} \ddot{\mathbf{q}} \\ \mathbf{\tau} \\ \lambda \end{bmatrix}$$
 S.t. $\mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) \leq \mathbf{v}_1,$ $\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1) = \mathbf{w}_1$

 $\min_{\mathbf{y}, \mathbf{v}_1} \|\mathbf{v}_1\|^2 + \|\mathbf{W}_1(\mathbf{B}_1\mathbf{y} + \mathbf{b}_1)\|^2$

s.t.
$$V_1(A_1y + a_1) \le v_1$$

$$\mathbf{y} = \mathbf{y}_1^* + \mathbf{Z}_1 \mathbf{u}_2,$$

$$\mathbf{V}_1(\mathbf{A}_1 \mathbf{y} + \mathbf{a}_1) - \mathbf{v}_1^* \le 0$$

QP 2:
$$\min_{\mathbf{u}_2, \mathbf{v}_2} \|\mathbf{v}_2\|^2 + \|\mathbf{W}_2(\mathbf{B}_2\mathbf{y} + \mathbf{b}_2)\|^2$$

s.t.
$$\mathbf{V}_2(\mathbf{A}_2\mathbf{y} + \mathbf{a}_2) \leq \mathbf{v}_2,$$

 $\mathbf{y} = \mathbf{y}_1^* + \mathbf{Z}_1\mathbf{u}_2,$
 $\mathbf{V}_1(\mathbf{A}_1\mathbf{y} + \mathbf{a}_1) - \mathbf{v}_1^* \leq 0$

$$\mathbf{Z}_i$$
 surjective map onto $\bigcap_{j=1}^i \text{Nullspace}(\mathbf{W}_j \mathbf{B}_j)$

Computation Time

- Solving a cascade of QPs in Ims requires an efficient implementation
- QP variables: n+6+n+6*c (c = number of constrained endeffectors)
- Highest priority objective: $\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{N}(\mathbf{q},\dot{\mathbf{q}}) = \boldsymbol{\tau} + \mathbf{J}_c^T\boldsymbol{\lambda}$ $\tilde{\mathbf{M}}(\mathbf{q})\ddot{\mathbf{q}} + \tilde{\mathbf{N}}(\mathbf{q},\dot{\mathbf{q}}) = \tilde{\mathbf{J}}_c^T\boldsymbol{\lambda}$
- ullet By substituting $oldsymbol{ au}=\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}}+\mathbf{N}(\mathbf{q},\dot{\mathbf{q}})-\mathbf{J}_c^Toldsymbol{\lambda}$ we save n variables and n constraints!

Computation Time

- Solving a cascade of QPs in Ims requires an efficient implementation
- QP variables: n+6+1/4+6*c (c = number of constrained endeffectors)
- Highest priority objective: $\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{N}(\mathbf{q},\dot{\mathbf{q}}) = \tau + \mathbf{J}_c^T \boldsymbol{\lambda}$ $\tilde{\mathbf{M}}(\mathbf{q})\ddot{\mathbf{q}} + \tilde{\mathbf{N}}(\mathbf{q},\dot{\mathbf{q}}) = \tilde{\mathbf{J}}_c^T \boldsymbol{\lambda}$
- By substituting $au=\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}}+\mathbf{N}(\mathbf{q},\dot{\mathbf{q}})-\mathbf{J}_c^T\boldsymbol{\lambda}$ we save n variables and n constraints!
- SVD (required for Z) and solving QP is done in parallel => SVD comes for free

Computation Time

- Solving a cascade of QPs in Ims requires an efficient implementation
- QP variables: n+6+1/4+6*c (c = number of constrained endeffectors)
- Highest priority objective: $\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{N}(\mathbf{q},\dot{\mathbf{q}}) = \tau + \mathbf{J}_c^T \boldsymbol{\lambda}$ $\tilde{\mathbf{M}}(\mathbf{q})\ddot{\mathbf{q}} + \tilde{\mathbf{N}}(\mathbf{q},\dot{\mathbf{q}}) = \tilde{\mathbf{J}}_c^T \boldsymbol{\lambda}$
- By substituting $au=\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}}+\mathbf{N}(\mathbf{q},\dot{\mathbf{q}})-\mathbf{J}_c^T\boldsymbol{\lambda}$ we save n variables and n constraints!
- SVD (required for Z) and solving QP is done in parallel => SVD comes for free
- first hierarchie is always EoM and torque constraints => no QP needs to be solved

Speedup

Priority	Nr. of eq(uality) and ineq(uality) constraints	Constraint/Task
1	25 eq	Eq. (12) (not required for
		simplified problem)
	6 eq	Newton Euler Eq. (13)
	2×25 ineq	torque limits
2	$c \times 6 \mathrm{eq}$	kinematic contact constraint
	$c \times 4$ ineq	CoPs reside in sup. polygons
	$c \times 4$ ineq	GRFs reside in friction cones
	2×25 ineq	joint acceleration limits
3	3 eq	PD control on CoM
	$(2-c)\times 6$	PD control on swing foot
4	25 + 6 eq	PD control on posture
5	$c \times 6$ eq	regularizer on GRFs
	DoFs: 25	max. time: 5 ms / 3 ms

no decomposition — with decomposition 3.5

2.5

1 2 3 4 5 6

Time [s]

Momentum Control

$$\mathbf{H}_{\mathbf{G}}(\mathbf{q})\dot{\mathbf{q}} = \mathbf{m}$$
 [Orin, & Goswami 2008]

$$\dot{\mathbf{m}}_{ref} = \mathbf{P} \begin{bmatrix} M(\mathbf{x}_{cog,des} - \mathbf{x}_{cog}) \\ \mathbf{0} \end{bmatrix} + \mathbf{D}(\mathbf{m}_{des} - \mathbf{m}) + \dot{\mathbf{m}}_{des}$$

$$\dot{\mathbf{m}} = \mathbf{H}_{\mathbf{G}} \ddot{\mathbf{q}} + \mathbf{H}_{\mathbf{G}} \dot{\mathbf{q}}$$

$$= \begin{bmatrix} \mathbf{I}_{3 \times 3} & \mathbf{0}_{3 \times 3} & \dots \\ [\mathbf{x}_{cog} - \mathbf{x}_i]_{\times} & \mathbf{I}_{3 \times 3} & \dots \end{bmatrix} \boldsymbol{\lambda} + \begin{bmatrix} M \mathbf{g} \\ \mathbf{0} \end{bmatrix}$$

No meaningful integral of angular momentum (orientation)

choice of ang. mom. for motions is non-intuitive. putting it in nullspace of motion generates undesirable behavior

requires deriving H numerically => can suffer from noise

Momentum-based Balance Control

Priority	Nr. of eq(uality) and ineq(uality) constraints	Constraint/Task
1	6 eq	Newton Euler Eq. (13)
	2×14 ineq	torque limits
	$2 \times 6 \text{ eq}^-$	kinematic contact constraint
	2×4 ineq	CoPs reside in sup. polygons
	2×4 ineq	GRFs reside in friction cones
	2×14 ineq	joint acceleration limits
2	6 eq	PD control on system
	-	momentum, Eq. (17)
	14 + 6 eq	PD control on posture
	$2 \times 6 \text{ eq}$	regularizer on GRFs
	DoFs: 14	max. time: 0.4 ms

- formulation requires only one QP
- runs solidly below Ims
- guarantees dynamic constraints; makes no trade-offs

Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics

Alexander Herzog⁺, Ludovic Righetti⁺*, Felix Grimminger⁺, Peter Pastor^{*}, Stefan Schaal⁺*

*Autonomous Motion Department

Max-Planck Institute

The second of the s Max-Planck-Institute for Intelligent Systems

Computational Learning and Motor Control Lab University of Southern California

Momentum-based Balance Control

- Recovers CoM position after push
- guarantees admissible CoPs and predicts these reliably

Squatting

Priority	Nr. of eq(uality) and	Constraint/Task
	ineq(uality) constraints	
1	6 eq	Newton Euler Eq. (13)
	2×14 ineq	torque limits
2	2×6 eq	kinematic contact constraint
	2×4 ineq	CoPs reside in sup. polygons
	$2 \times 4 \text{ ineq}$	GRFs reside in friction cones
	2×14 ineq	joint acceleration limits
3	3 eq	PD control on CoG
4	14+6 eq	PD control on posture
5	$2 \times 6 \text{ eq}$	regularizer on GRFs
	DoFs: 14	max. time: 0.9 ms

- prioritize
 - I. dynamic constraints
 - 2. CoM motion tracking
 - 3. redundancy resolution on motion and forces

Squatting

(a) 0.25 Hz high amplitude tracking task

(b) 0.3 Hz low amplitude tracking task

- We can track CoM tasks of different frequencies
- Posture and GRFs are optimized in a lower hierarchy
- allows for balancing up to some extend in face of disturbances
- no ang. mom. control

Balance in Single-Support

Priority	Nr. of eq(uality) and ineq(uality) constraints	Constraint/Task
1		Newton Euler Eq. (13)
1	6 eq	* ` '
	2×14 ineq	torque limits
2	2×4 ineq	CoPs reside in sup. polygons
	2×4 ineq	GRFs reside in friction cones
	2×14 ineq	joint acceleration limits
3	6 eq.	Linear and angular momen-
	_	tum control
	12/6 eq.	kinematic contact constraint
	0/6 eq.	Cartesian foot motion (swing)
	14 eq.	PD control on posture
4	$2 \times 6/1 \times 6$ eq.	regularizer on GRFs
	DoFs: 14	max. time: 1.05 ms

- moving on one leg requires contact switches (problematic in hierarchies)
- We put kinematic contact constraints and swing foot task into the same hierarchy to avoid the problem

Balance in Single-Support

- F/T Sensor attached to stick
- Impulse comparably high to related work* (4.5 to 5.8 Ns)
- transitioning phase for contact switch

Notes on Experiments

- We feed forward torques from solver directly. No additional joint control
- Limiting Factors:
 - Naive state estimation
 - dynamic model is obtained from CAD
 - Lag of feasible trajectories => Slacks due to inconsistency with EoM => closed-loop dynamics not achieved

Notes on Experiments

- Solver Formulation:
 - slacks help analyzing conflicts in control
 - the more hierarchies the less intuitive the behavior
 - unclear what des ang. mom. should be when moving
- theoretically QP cascades generate smooth trajectories, when problem changes smoothly, but the slopes can be very high if many inequality constraints become active

- bad velocity readings
- so far no really dynamic motions => are quasi-static approaches sufficient?

Conclusion

- cascades of QPs can be used to express desired closed loop dynamics in a consistent way
- they can be implemented efficiently on a 14 DoF robot
- they work reliably for balancing and CoM tracking tasks despite model uncertainty, sensor noise and a naive estimation