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Low-level control of Sarcos humanoid

• Lower body of Sarcos humanoid
• 17 DOFs
• Linear hydraulic actuators
• Moog 30 Series valves
• Load cells and position sensors at 

each joint
• 6-axis force sensors in the foot
• 1KHz control loop
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Control of hydraulics

• How do we implement a “torque source” with hydraulics?

Fig. 1. The lower part of the Sarcos Humanoid on which experiments
were conducted. Credit: Luke Fisher Photography.
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Fig. 2. Example of torque tracking performance during a balancing
experiment. The left hip flexion/extension, left knee and left ankle flex-
ion/extension and adduction/abduction joints are shown. Both desired (blue)
and actual (green) torques are shown.

B. Low-level torque control

For each actuator, we implemented a torque feedback
controller that ensures that each joint produces the desired
force generated by the balance controller. The controller
essentially computes desired valve commands given a desired
torque, the valve commands representing a desired flow. The
controller we implemented is very much inspired from the
work in [3], [16], with the difference that we implemented
a simpler version where piston velocity feedback has a
constant gain. The control law is

v = PID(Fdes, F ) +Kẋpiston + c (13)

where v is the valve command, PID is a PID control
according to desired force command and force measured
from the load cells, K is a positive gain, ẋpiston is the
piston velocity (computed from the joint velocity) and c is a
constant bias.

This controller design allowed us to achieve good torque
tracking performance and was essential in getting good
performance in the balance controller. Figure 2 illustrates
the torque tracking performance during a balancing task.

V. EXPERIMENTS
We evaluated the controller presented in Sect. III on

the Sarcos Humanoid described in Sect. IV. The balancing
performance of the robot was tested in different scenarios
where we applied external forces as we will explain in this
section. A summary of the experiments is shown in the
attached movie1. In all scenarios we controlled the biped
to track a CoM located at a fixed offset relative to the feet
and set ḣdes = 0 in order to damp out disturbances on the
system. The reference joint accelerations were set from a PD
control command q̈ref = PD(qdes) to track a fixed posture.
The torques resulting from our optimization were forwarded
directly as control command. The dynamic model used in the
experiments is the CAD model of the robot, with a simple
correction of the robot total mass that was put in the base
of the robot. Note that we do not use any joint space PID
controller.

In our first experiment we pushed the robot impulsively
with a stick. Various contact points and force directions were
chosen. To ensure that the robot is really balancing, the same
experiment was conducted when running a simple inverse
dynamics algorithm with contact forces optimization that was
presented in [7]. As expected, the balance controller showed
a better balancing performance and did not fall over as it
was the case for [7] as can be seen in Fig. 3. When pushing
the robot with a constant force at various parts, it stayed in
balance and adapted its positions in a compliant manner. We
also tested the controller when the feet were not co-planar,
but one foot was put on top of a block as can be seen on
the movie.

In the planar posture, even pushes with a rather high
magnitude were absorbed and the robot kept standing. The
change in momentum was damped out quickly and the CoM
was tracked after an initial disturbance as can be seen in
Fig. 4. The CoPs remained inside of the support polygons
and were tracked well. We notice from Figure 4 that the CoP
predictions are approximately correct (within 2cm error).
However, one can expect that a higher precision might be
needed to achieve dynamic motions which could be achieved
with an inertial parameters estimation procedure [17].

For our next experiment we put the biped on a rolling
platform and rotated and moved it with a rather fast change
of directions. Although, the CoM was moving away from its
desired position initially, the momentum change was damped
out and the robot kept standing and recovered CoM tracking.
The stationary feet indicated that forces were applied that
were consistent with our CoP boundaries.

In an additional scenario the biped was standing on a bal-
ancing board. We ran the experiment with two configurations
for the robot: in one case the robot is standing such that the
board motion happens in the sagittal plane and in the other
case the motion happens in the lateral plane. Figure 5 shows
results when the motion happens in the lateral plane. In this
case, the slope was varied in a range of [�9.5�; 9.5�]. Even
for quite rapid changes in the slope, the feet remained flat on

1An extended version is also available on http://youtu.be/dW-hC04VaFs

[Boaventura et al. 2012]

• Special care in calibration and tuning of controller to maximize 
performance

• This controller was key to good force control performances



IROS 2013 - Ludovic Righetti

Torque tracking performance

Tracking a 15Hz sine torque profile (5Nm amplitude)

[Boaventura et al. 2012]
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Torque tracking performance
Fig. 1. The lower part of the Sarcos Humanoid on which experiments
were conducted. Credit: Luke Fisher Photography.
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Fig. 2. Example of torque tracking performance during a balancing
experiment. The left hip flexion/extension, left knee and left ankle flex-
ion/extension and adduction/abduction joints are shown. Both desired (blue)
and actual (green) torques are shown.

B. Low-level torque control

For each actuator, we implemented a torque feedback
controller that ensures that each joint produces the desired
force generated by the balance controller. The controller
essentially computes desired valve commands given a desired
torque, the valve commands representing a desired flow. The
controller we implemented is very much inspired from the
work in [3], [16], with the difference that we implemented
a simpler version where piston velocity feedback has a
constant gain. The control law is

v = PID(Fdes, F ) +Kẋpiston + c (13)

where v is the valve command, PID is a PID control
according to desired force command and force measured
from the load cells, K is a positive gain, ẋpiston is the
piston velocity (computed from the joint velocity) and c is a
constant bias.

This controller design allowed us to achieve good torque
tracking performance and was essential in getting good
performance in the balance controller. Figure 2 illustrates
the torque tracking performance during a balancing task.

V. EXPERIMENTS
We evaluated the controller presented in Sect. III on

the Sarcos Humanoid described in Sect. IV. The balancing
performance of the robot was tested in different scenarios
where we applied external forces as we will explain in this
section. A summary of the experiments is shown in the
attached movie1. In all scenarios we controlled the biped
to track a CoM located at a fixed offset relative to the feet
and set ḣdes = 0 in order to damp out disturbances on the
system. The reference joint accelerations were set from a PD
control command q̈ref = PD(qdes) to track a fixed posture.
The torques resulting from our optimization were forwarded
directly as control command. The dynamic model used in the
experiments is the CAD model of the robot, with a simple
correction of the robot total mass that was put in the base
of the robot. Note that we do not use any joint space PID
controller.

In our first experiment we pushed the robot impulsively
with a stick. Various contact points and force directions were
chosen. To ensure that the robot is really balancing, the same
experiment was conducted when running a simple inverse
dynamics algorithm with contact forces optimization that was
presented in [7]. As expected, the balance controller showed
a better balancing performance and did not fall over as it
was the case for [7] as can be seen in Fig. 3. When pushing
the robot with a constant force at various parts, it stayed in
balance and adapted its positions in a compliant manner. We
also tested the controller when the feet were not co-planar,
but one foot was put on top of a block as can be seen on
the movie.

In the planar posture, even pushes with a rather high
magnitude were absorbed and the robot kept standing. The
change in momentum was damped out quickly and the CoM
was tracked after an initial disturbance as can be seen in
Fig. 4. The CoPs remained inside of the support polygons
and were tracked well. We notice from Figure 4 that the CoP
predictions are approximately correct (within 2cm error).
However, one can expect that a higher precision might be
needed to achieve dynamic motions which could be achieved
with an inertial parameters estimation procedure [17].

For our next experiment we put the biped on a rolling
platform and rotated and moved it with a rather fast change
of directions. Although, the CoM was moving away from its
desired position initially, the momentum change was damped
out and the robot kept standing and recovered CoM tracking.
The stationary feet indicated that forces were applied that
were consistent with our CoP boundaries.

In an additional scenario the biped was standing on a bal-
ancing board. We ran the experiment with two configurations
for the robot: in one case the robot is standing such that the
board motion happens in the sagittal plane and in the other
case the motion happens in the lateral plane. Figure 5 shows
results when the motion happens in the lateral plane. In this
case, the slope was varied in a range of [�9.5�; 9.5�]. Even
for quite rapid changes in the slope, the feet remained flat on

1An extended version is also available on http://youtu.be/dW-hC04VaFs
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Control of hydraulics

• Painful to tune controllers for each DOF

• Now: looking into automatic tuning / learning control
  (current work by S. Trimpe)

• Control performance not so good for ankles
  (velocity compensation gain really depends on position)
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Inverse dynamics for legged robots

[Righetti et al., IJRR 2013]

Equations of motion: Mq̈+ h = ST ⌧ + JT
c �

QR decomposition of constraint Jacobian JT
c = [Qc Qu]


R
0

�

[Mistry et al. 2010]
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QR decomposition of constraint Jacobian JT
c = [Qc Qu]


R
0

�

[Mistry et al. 2010]



IROS 2013 - Ludovic Righetti

Inverse dynamics for legged robots

[Righetti et al., IJRR 2013]

Equations of motion:

� = R�1QT
c (Mq̈d + h� ST ⌧ )

QT
u (Mq̈d + h) = QT

uS
T ⌧

QR decomposition of constraint Jacobian JT
c = [Qc Qu]


R
0

�

[Mistry et al. 2010]

Dynamic consistency

Contact force as a 
function of actuation
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Optimal distribution of contacts

[Righetti et al. 2012]

s.t. QT
uS

T ⌧ = QT
u (Mq̈d + h)

C⇥⌧  d⇥

C��  d�

argmin
⌧ ,�

1

2
⌧TW⇥⌧ + bT

⇥ ⌧ +
1

2
�TW��+ bT

��

Dynamic consistency

Torque constraints

Contact forces constraints



IROS 2013 - Ludovic Righetti

Optimal distribution of contacts
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Optimal distribution of contacts

[Righetti et al. 2012]

s.t. QT
uS

T ⌧ = QT
u (Mq̈d + h)

C⇥⌧  d⇥

C��  d�

argmin
⌧ ,�

1

2
⌧TW⇥⌧ + bT

⇥ ⌧ +
1

2
�TW��+ bT

��

Dynamic consistency

Torque constraints

Contact forces constraints



IROS 2013 - Ludovic Righetti

Optimal distribution of contacts
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Optimal distribution of contacts

[Righetti et al. 2012]

Dynamic consistency

Torque constraints

Contact forces constraints

s.t. QT
uS

T ⌧ = QT
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C⇥⌧  d⇥

�C�R
�1QT

c S
T ⌧  d� �C�R

�1QT
c (Mq̈d + h)

argmin
⌧

1

2
⌧TW⇥⌧ + bT

⇥ ⌧ +
1

2
�TW��+ bT

��



IROS 2013 - Ludovic Righetti

Optimal distribution of contacts

[Righetti et al. 2012]

Dynamic consistency

Torque constraints

Contact forces constraints

s.t. QT
uS

T ⌧ = QT
u (Mq̈d + h)

C⇥⌧  d⇥

�C�R
�1QT

c S
T ⌧  d� �C�R

�1QT
c (Mq̈d + h)

• QP depends only on torques

• No need of an explicit representation of contact forces

• Problem with constant size - no matter the number of contacts

argmin
⌧

1

2
⌧TW⇥⌧ + bT

⇥ ⌧ +
1

2
�TW��+ bT

��
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Optimal distribution of contact forces
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Inverse dynamics for legged robots

[Righetti et al., IJRR 2013]

• Inverse dynamics (joint acceleration) and operational space 
(task space accelerations) control

• Torque redundancy to optimize contact forces

• Computationally fast (1KHz control loop)

• Robust to model uncertainties / better with system 
identification (no need to compute inertia matrix)

[Mistry et al., 2010]



• Passivity-based: exploit quasi-static assumption [Hyon et al, 2007][Ott et al, 2011]

+ robustness due to passivity; no need for precise dynamics model

- assumptions are potentially limiting for dynamic motions 

• Control with full Dynamical Model [Stephens et al, 2010][Hutter et al, 2012][Righetti et al, 2013]

+ theoretically well suited for dynamic motions

- requires model and efficient implementation

Related Work



define desired closed-loop 
dynamics 

e.g.                                         (1)        

• Typical use of the presented framework:
• define desired closed-loop dynamics
• pick one q* (out of many) that satisfies 

Eq (1)

Motivation
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dynamics 

e.g.                                         (1)        

exploit redundancy to 
optimize cost on torques or forces

• Typical use of the presented framework:
• define desired closed-loop dynamics
• pick one q* (out of many) that satisfies 

Eq (1)
• optimize over space of redundant 

torques and forces

• Potentially suboptimal or even infeasible by 
ignoring all other solutions to Eq (1)

• In addition it is useful to be able to express 
hierarchies on inequalities

Motivation

J

x

q̈ = PD(xdes, ẋdes)
q̈



Hierarchies

CoM PD

• We want 
• the CoM to have PD behavior
• the hand as well

• what if both cannot be satisfied?
• => weighting might help

Hand PD



Hierarchies

CoP

CoM PD

• We want
•  the CoM to have PD behavior
• CoP to reside inside support polygon

• if CoP constr. violated => kinematics 
constraint wrong

• => hierarchies

• We want 
• the CoM to have PD behavior
• the hand as well

• what if both cannot be satisfied?
• => weighting might help



• cascades of QPs: recursively solve a QP without violating optimality of 
previous QPs  [de Lasa,2010, Mansard, 2012]

• generalize pseudo-inverse approaches: allow inequality constraints

• have not been implemented in a feedback-loop on a robot before

• requires efficient implementation to run on torque controlled robot

• how well does it perform under model-uncertainty, noisy velocity 
measures and realistic base-state estimation?

Related Work



Cascades of QPs
[deLasa et. al., 2010]

QP 1: min.
y,v1,w1

kv1k+ kw1k

s.t. V1(A1y + a1)  v1,

W1(B1y + b1) = w1
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y =
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4
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⌧
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Cascades of QPs

substitute w
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Cascades of QPs

substitute w

find optimizer
y⇤
1,v
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Cascades of QPs

substitute w

find optimizer
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• Solving a cascade of QPs in 1ms requires an efficient implementation

• QP variables: n+6 + n + 6*c (c = number of constrained endeffectors)

• Highest priority objective:

• By substituting                                                           we save n variables and n constraints!

Computation Time

M(q)q̈+N(q, q̇) = ⌧ + JT
c �

M̃(q)q̈+ Ñ(q, q̇) = J̃T
c �

⌧ = M(q)q̈+N(q, q̇)� JT
c �
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• Solving a cascade of QPs in 1ms requires an efficient implementation

• QP variables: n+6 + n + 6*c (c = number of constrained endeffectors)

• Highest priority objective:

• By substituting                                                           we save n variables and n constraints!

• SVD (required for Z) and solving QP is done in parallel => SVD comes for free

• first hierarchie is always EoM and torque constraints => no QP needs to be solved

Computation Time

M(q)q̈+N(q, q̇) = ⌧ + JT
c �

M̃(q)q̈+ Ñ(q, q̇) = J̃T
c �
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HG(q)q̇ = m

Momentum Control

No meaningful integral of angular momentum 
(orientation)

choice of ang. mom. for motions is non-
intuitive. putting it in nullspace of motion 
generates undesirable behavior

requires deriving H numerically => can suffer 
from noise
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[Orin, & Goswami 2008]



• formulation requires only one QP

• runs solidly below 1ms

• guarantees dynamic constraints; makes 
no trade-offs

Momentum-based Balance Control





• Recovers CoM position after 
push

• guarantees admissible CoPs and 
predicts these reliably

Momentum-based Balance Control



• prioritize 

1. dynamic constraints 

2. CoM motion tracking 

3.  redundancy resolution on motion and 
forces

Squatting





• We can track CoM tasks of 
different frequencies

• Posture and GRFs are optimized 
in a lower hierarchy

• allows for balancing up to some 
extend in face of disturbances

• no ang. mom. control

Squatting



• moving on one leg requires contact 
switches (problematic in hierarchies)

• We put kinematic contact constraints 
and swing foot task into the same 
hierarchy to avoid the problem

Balance in Single-Support





• F/T Sensor attached to stick

• Impulse comparably high to 
related work* (4.5 to 5.8 Ns)

• transitioning phase for contact 
switch

Balance in Single-Support

*[Ott, 2011]



• We feed forward torques from solver 
directly. No additional joint control

• Limiting Factors:

• Naive state estimation

• dynamic model is obtained from CAD

• Lag of feasible trajectories => Slacks 
due to inconsistency with EoM => 
closed-loop dynamics not achieved

Notes on Experiments



Notes on Experiments

• Solver Formulation:

• slacks help analyzing conflicts in 
control

• the more hierarchies the less intuitive 
the behavior

• unclear what des ang. mom. should be 
when moving

• theoretically QP cascades generate 
smooth trajectories, when problem 
changes smoothly, but the slopes can be 
very high if many inequality constraints 
become active

• bad velocity readings

• so far no really dynamic motions => are 
quasi-static approaches sufficient?



• cascades of QPs can be used to express desired closed loop 
dynamics in a consistent way

• they can be implemented efficiently on a 14 DoF robot

• they work reliably for balancing and CoM tracking tasks despite 
model uncertainty, sensor noise and a naive estimation

Conclusion


